## Members of the Working Party

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Company/Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenor</td>
<td>P. Wilson</td>
<td>Kier Construction – Engineering Ltd</td>
</tr>
<tr>
<td>Secretary</td>
<td>J. Carpenter</td>
<td>Temporary Works Forum</td>
</tr>
<tr>
<td>Members</td>
<td>J. Gregory</td>
<td>Carillion plc</td>
</tr>
<tr>
<td></td>
<td>S. Hall</td>
<td>Costain</td>
</tr>
<tr>
<td></td>
<td>T. Lohmann</td>
<td>Swanton Consulting Ltd</td>
</tr>
<tr>
<td>Corresponding Members</td>
<td>C. Bennion</td>
<td>Kier Construction – Engineering Ltd</td>
</tr>
<tr>
<td></td>
<td>N. Boyle</td>
<td>Balfour Beatty Construction Services UK</td>
</tr>
<tr>
<td></td>
<td>M. Davies</td>
<td>Barhale Construction plc</td>
</tr>
<tr>
<td></td>
<td>J. Gill</td>
<td>Hochtief (UK) Construction Ltd</td>
</tr>
<tr>
<td></td>
<td>R. Hare Winton</td>
<td>BAM Construct UK Ltd</td>
</tr>
<tr>
<td></td>
<td>W. Hewlett</td>
<td>Costain</td>
</tr>
<tr>
<td></td>
<td>M. Holmes</td>
<td>Pascoe Ltd</td>
</tr>
<tr>
<td></td>
<td>A. Jones</td>
<td>RMD Kwikform Ltd</td>
</tr>
<tr>
<td></td>
<td>R. Kugananthan</td>
<td>Laing O’Rourke</td>
</tr>
<tr>
<td></td>
<td>S. Marchand</td>
<td>Wentworth House Partnership</td>
</tr>
<tr>
<td></td>
<td>J. Pratt</td>
<td>Pinsent Masons LLP</td>
</tr>
<tr>
<td></td>
<td>A. Rattray</td>
<td>HSE</td>
</tr>
<tr>
<td></td>
<td>K. Shivji</td>
<td>Miller Construction</td>
</tr>
</tbody>
</table>


**Synopsis**

Reinforcement cages are common features on construction projects. However, the assessment of their temporary stability during lifting and prior to concreting has limited guidance and is most commonly dealt with by custom and practice. They have been known to collapse and cause both death and injury.

This guidance note is written to explain the key issues, and to give specific assistance to those specifying, managing, designing and installing reinforcement cages.

**Foreword**

The Temporary Works Forum gratefully acknowledges the contribution made by members of the working party in the preparation of this guidance.

Although the Temporary Works Forum does its best to ensure that any advice, recommendations or information it may give either in this publication or elsewhere is accurate, no liability or responsibility of any kind (including liability for negligence) howsoever and from whatsoever cause arising, is accepted in this respect by the Forum, its servants or agents.

The working party recognise that some photographs may show breaches of current safety regulations but the photographs have been retained in the guide to illustrate particular items of interest.

At various points in this report, formal design processes are recommended. This recommendation is made despite the inexact nature of design in the subject area of this document. Experience is thus a pre-requisite. Any designer new to design for temporary stability of reinforcement is urged to seek expert advice. The Temporary Works Forum is able to assist engineers and project managers to access this expertise – please contact the Secretary.

Readers should note that the documents referenced in the Appendix are subject to revision from time to time and should therefore ensure that they are in possession of the latest version.

---

**Contents**

To navigate to page - hover over an item below and 'click'. Return to contents by clicking on the ‘Return to the contents’ at the bottom of every page.

**Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page**

1.0 Introduction ........................................... 6
1.1 Target Audience ........................................ 6
1.2 Background ............................................. 6
1.3 Scope ..................................................... 8
1.3.1 Lifting ................................................. 8
1.3.2 In place, prior to concreting or stabilisation by the shutter ........ 8
1.4 Responsibilities ......................................... 9
1.5 Risk assessment method ............................... 9
2.0 Lifting of reinforcement ................................. 11
2.1 LOLER regulations and relevant standards .......... 11
2.2 Modes of failure when lifting ............................ 11
2.3 Requirements for tying reinforcement cages .......... 12
2.4 Lifting ..................................................... 13
2.5 Rotation of cages (fabrication/lifting) .................. 13
2.6 Example of good practice ............................... 14
3.0 Stability of reinforcement ............................... 18
3.1 Modes of failure ......................................... 18
3.1.1 Foundation elements ................................. 18
3.1.2 Column and wall elements ............................ 18
3.1.3 Slab elements ........................................ 18
3.1.4 Beam elements ....................................... 18
3.2 Maintaining form and spacing of cages ............... 19
3.2.1 Spacing of mats ...................................... 19
3.2.2 Maintaining shape .................................... 21
3.2.3 Improved fixity of bars within cage ................. 21
3.2.4 Improved spacing of mats within cage ............. 21
3.3 Measures that can increase stability .................... 21
3.4 Method of assessing stability requirements .......... 21
3.5 Example of good practice ............................... 23
4.0 Procedures and Responsibilities ....................... 26
4.1 Procedure ............................................... 26
4.2 Responsibilities: General ............................... 26
4.3 Responsibilities: Construction Phase ................. 27
4.4 Physical checks .......................................... 28
5.0 References ............................................... 30
Appendix A ................................................... 31
Appendix B ................................................... 35
1.0 Introduction

1.1 Target Audience

This guidance note is written to assist all parties involved in construction to understand the key issues, and to give specific assistance to those specifying, managing, designing and installing reinforcement cages.

1.2 Background

A large reinforcement assembly or cage can represent a considerable danger to those working on, adjacent to, or within it, should it collapse or fail during lifting. Collapses usually occur through lack of strength or lateral instability, or a lack of cage robustness prior to it being fully stabilised through containment within a shutter or similar. A number of cases have been reported in the press where collapse has occurred. Some have involved fatalities.

The increase in frequency of reinforcement cage collapses may be connected to the use of Mobile Elevating Work Platforms (MEWPs) to fix reinforcement. Previously, scaffolds have been used to fix reinforcement and these probably acted as supports to the reinforcement cages where required. There also appears to be a trend towards fixing taller cages with smaller vertical bars.
1.3 Scope

Reinforcement cages for walls, columns, beams and slab elements are considered within this document both for stability in place prior to concreting and also during lifting. These cages are considered either fixed in-situ, or pre-fabricated. Pile cages and diaphragm walls are beyond the scope of this document. For simplicity ‘cage’ is the descriptive term used throughout this note.

In practice the cage will require specific measures to be undertaken to ensure that it remains rigid and stable at all stages of the erection. Typical situations occur:

1.3.1 Lifting

- Adequacy of lifting mechanism/lifting point
- Adequacy of tying (or other method) to secure cage as a whole
- Cages which are required to be lifted from the horizontal to the vertical
- Security of individual bars

1.3.2 In place, prior to concreting or stabilisation by the shutter

- Large foundation structures which often have substantial reinforcement cages, made up of large diameter bars, to both top and bottom mats
- Retaining wall reinforcement where the front shutter has been omitted to allow access
- Vertical reinforcement cages e.g. for a wall, erected without any lateral support and which rely on the lap with foundation or other lower starter bars for stability
1.4 Responsibilities
Safe fabrication and erection of reinforcement cages relies on the cooperation and appropriate input of all parties including the Permanent Works Designer, Temporary Works Designer, Temporary Works Coordinator, Principal Contractor and the contractor carrying out the work. The Code of Practice for Temporary Works, BS 5975 sets out a recommended framework for managing this process by treating reinforcement cages as an item of temporary works (permanent works in an incomplete state). Further detail is provided in section 4.0.

1.5 Risk assessment method
On each individual location stability of reinforcement must be considered with the appropriate actions identified. During the risk assessment phase the permanent works drawings should be examined to determine whether the reinforcement is detailed in such a way as to provide sufficient rigidity and stability of cages during phased fixing of the bars. An overall assessment of the arrangement should be considered, for example to ensure that a tall reinforcement cage is not secured to an inadequately supported shutter or access scaffold, or to establish acceptable limits on movement.

Off-site cage fabrication should be considered in balance with the environmental considerations of transporting. However, prefabrication in factory controlled conditions provides a reduction to the risks in safety and particularly health (chronic musculoskeletal problems in steel fixers caused by poor posture and acute wrist problems). Issues relating to haulage including lashing points and dynamics under hard breaking should also be considered.

Table 1. Considerations when assessing the safety of reinforcement cages

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Nature of the cage itself</th>
<th>Delivery/Assembly</th>
<th>Means of stability</th>
<th>Personnel</th>
<th>Time: weather influences</th>
<th>Tying guidance</th>
<th>Welding guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Bar size and density • Shape of cage • High or eccentric centroid</td>
<td>• Inherently stable • Relying on laps/tying/welds • Relying on sequence of assembly • External means of support e.g. shutter • Dependent upon actions by other trades e.g. erection of shutter or scaffolding</td>
<td>• Requires entry into or access onto cage. • Adjacent working to cage • Competency</td>
<td>• Short duration before concreting • Specific support is provided • May be left over longer periods of time before concreting</td>
<td>• See Appendix A</td>
<td>• See Appendix A</td>
</tr>
</tbody>
</table>

- Clear allocation of responsibility at all stages (on-site delivery to concreting)
2.0 Lifting of reinforcement

The underlying requirement to carry out site specific risk assessment and design for the lifting of prefabricated reinforcement cages must be observed and managed in accordance with current legislation.

2.1 LOlER regulations and relevant standards

The Lifting Operations and Lifting Equipment Regulations 1998 (LOlER) and the associated Approved Code of Practice (ACoP) regulates the safe use of Lifting Equipment. The provisions need to be considered in parallel to the Management of Health and Safety at Work Regulations 1992 and the Provision and Use of Work Equipment Regulations 1998 (PUWER) There are no parts of LOlER that are specific to the lifting of reinforcement. The British Constructional Steelwork Association (BCSA) ‘Guide to the Management of Site Lifting Operations’ contains additional guidance although not specific to lifting of reinforcement.

2.2 Modes of failure when lifting

Potential modes of failure to be considered when planning lifts are:

- Instability of the crane (or lifting plant).
- Failure of lifting equipment (strops, chains, bars, shackles, lifting eyes etc.)
- Lifting points ripping off the cage
- Inadequate load path from the lifting points
- Axial buckling due to compression caused by inclined chains/strops
- Bending failure with scissor action at laps or excessive deflection of cages (requiring stiffening by inclined bars, links or U-bars)
- Laps and splices give way (tied laps frequently experience relative movement of around 25mm before failure).

Fig 5 - Buckling of cage due to axial forces and designed lifting points

Possible buckling of cage

Suitably designed reinforcement arrangement around lifting points
2.3 Requirements for tying reinforcement cages

Nodes where one rebar overlaps or crosses another in the same plane are commonly connected using single or multiple strands of tying wire that is twisted tight to hold the node in place. If the tying wire is not twisted sufficiently tight then the bars may slip or move; but if the wire is twisted too tight it can be strained to leave little working margin leading to failure under little additional load. Wire ties can be easily overstressed if the twisting action is used to pull rebar together to close up gaps. Kinked, nicked or corroded tie wire will also result in weak ties.

Where design is used to determine the risk of the failure modes above, the strength of ties can be assessed numerically or established from testing. Ties are normally formed using 1.6mm diameter (16SWG) wire or 1.2mm diameter (18SWG) stainless steel wire to one of the details below.

![Fig 6 - Tie patterns](image)

It should be noted that the strength of reinforcement ties can vary considerably. The fixing of reinforcement is mainly carried out using hand tools and there is inevitably a large variation in the techniques used by steel fixers.

Where there are multiple layers of reinforcement (3+), the ties should be wrapped around the adjacent bars, for example, layer 1 to layer 2 and layer 2 to layer 3. Wrapping ties around multiple layers increases the stretch in the wire and reduces the capacity of the ties.

2.4 Lifting

When lifting prefabricated reinforcement cages the following should be considered:

The weight of the cage should be established using published data (see Appendix B) and the reinforcement bending schedule.

The position of the lifting points should be determined to ensure that the cage does not deform excessively with lifting beams used to ensure loads are distributed evenly and at an angle perpendicular to the bars to be lifted. Evenly distributed loading on the cage will depend on lifting beam stiffness, spacing of attachments and sling stiffness and length.

Where lifting points are used measures need to be taken to ensure that loads can be distributed into the cage. In general lifting points should be welded to cages (if the specification permits; by competent welders and with due allowance for the reinforcement grade) and the use of steel flats for this purpose is common practice. Double ties are required for cages that are to be lifted or handled.

Many reinforcement cages are unusual shapes and the centre of gravity becomes difficult to calculate. As with all lifts the cage will move or rotate as the load is taken up until the centre of gravity of the lift is directly below the point of suspension (the crane hook). It is important to establish a set of lifting points and lifting equipment that facilitates any required movement.

Provided that a cage being lifted will not become unstable/top heavy during the lift, consideration should be given to positioning lifting points on the lowest bars so as to minimise the number of wire ties working in tension during the lift. However, in normal circumstances all lifting points should be fixed to the reinforcement cage above the level of the centre of gravity of the cage.

Cages should be re-inspected after each lift if moving several times. Ties may have stretched if the cage has deflected significantly during the previous lift. It is advisable not to double or triple handle cages where practicable.

Small pile-caps are often prefabricated, and these are often lifted by excavator travelling on rough ground. As such they are prone to failure by the spacing of the upper and lower mats not being maintained.

Prefabricated lifting cages should not be lifted over the heads of personnel.
2.5 Rotation of cages (fabrication/lifting)

If possible the cage should be fixed in the same alignment as it will be eventually placed so that no tilting or turning is required. This can involve creating the cage in a jig that is set at the correct angle.

Some cages such as walls may need to be fixed on their side and then tilted through 90° when they are picked up. Tilting a cage will be critical both for the internal strength of the cage and for the lifting equipment (including the lifting points). Large wall cage lifts are often undertaken as tandem lifts so that the cage is not touching the ground when it is rotated but the rigging and execution of such lifts is complex and involves lifting equipment that accommodates the change in lifting angles (this can involve pulleys to allow rotation). Sliding of the cage along the ground as it is tilted should be avoided and prevented with ties if necessary.

The design of lifting points to facilitate rotation in reinforcement cages is very complex and best avoided if possible. A competent designer should carry out the design otherwise.

2.6 Example of good practice

The following sequence of photographs shows the key stages in the fixing, lifting, transporting and placing of some large reinforcement cages weighing approximately 17t each.

Fig 7. Initial fixing in an offsite jig
Fig 8. Opposite end of jig showing alignment rails

Fig 9. Template welded to end of cage facilitates alignment of tensioning ducts (small lugs are not lifting eyes)
Fig 10. Fabricated support near rear of cage. The cage has been constructed rotated to allow the supports to be fixed.

Fig 11. Detail of welding lugs fixing the template to the front of the cage.
Fig 12. Cage rotated using appropriate lifting equipment.

Fig 13. Cage lifted into position.
3.0 Stability of reinforcement

3.1 Modes of failure

Elements can fail in a variety of ways depending on the size and shape of the element and how it is moved or placed.

3.1.1 Foundation elements

Larger foundation elements, built in-situ, generally fail due to the insufficient support of the top mat on chairs or similar.

3.1.2 Column and wall elements

Column and wall elements can fail by the shape not being maintained, and also by overturning if the connection to the starter bars is insufficiently robust.

The failure mechanism for vertical members tends to be by the failure of the spacers between the mats leading to the mats separating and acting individually, causing a reduction in the section resisting overturning. An alternative mechanism is for the ties between the starters and the cage to fail.

The presence of L-bars as starters to the top of the column or wall, for slabs can introduce an eccentric load at the top of the member, decreasing the stability of the element.

3.1.3 Slab elements

Slab elements can fail due to the insufficient support of the top mat on chairs or similar.

3.1.4 Beam elements

Beam elements can fail by racking of links or buckling of upper bars. Deep beam elements can be laterally unstable.

---

Fig 15. Elevation on beam or deep base showing racking of cage and additional inclined bracing bars to provide stability

Fig 14. Elevation on wall or column showing bending of cage and additional spacer bars to provide stability

Additional U-bar spacers tied to horizontal lacer bars (applicable to walls)

* 3.0m dimension based on custom and practice
3.2 Maintaining form and spacing of cages

3.2.1 Spacing of mats

In order to fix the final depth of the element the bars need to be spaced apart. With beam and column elements this is usually achieved with the links. For slab and wall elements specific chairs or spacers will be required.

Even with links providing the shape of the elements some bars may be supported only by the ties to the links rather than by the enclosure of links.

For slabs and foundation elements the chairs will need to be robust enough to allow the top mat to be accessed as a working platform. The size of chairs to support the upper mat will be a function of the chair spacing (which depends on the size and strength of the top mat) and the weight of the top mat combined with the access load.

Distribution steel running perpendicular to the lowest top mat bars should be provided as this prevents bars being suspended by tying wire and ensures all bars bear adequately onto the cover spacers. The standard chair (BS8666 shape code 98) relies on the strut action of the vertical legs. These are bi-axially bent by the shape of the chair.

It is suggested that the effective length of the strut is considered as 1.5 times the distance between the mats. Table 2 and 3 are based on using grade 500 reinforcing steel and a factor on load of 1.5.

For maintaining the separation of mats in walls and thinner slabs, continuous wire chairs are useful. The edges of slabs and walls will need support close to the end of the wall or stop-end.

### Table 2. Ultimate capacity of chair elements per leg - Pult (kN)

Based on effective length equal to 1.5 times mat spacing

<table>
<thead>
<tr>
<th>Depth between mats (mm)</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12 leg</td>
<td>12.7</td>
<td>3.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H16 leg</td>
<td>36.8</td>
<td>10.6</td>
<td>4.9</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H20 leg</td>
<td>79.4</td>
<td>25.2</td>
<td>11.7</td>
<td>6.7</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H25 leg</td>
<td>Y</td>
<td>59.1</td>
<td>28.0</td>
<td>16.1</td>
<td>10.5</td>
<td>X</td>
</tr>
<tr>
<td>H32 leg</td>
<td>Y</td>
<td>Y</td>
<td>76.4</td>
<td>44.0</td>
<td>28.5</td>
<td>19.9</td>
</tr>
</tbody>
</table>

**Notes:** X indicates an element that is too slender, Y indicates a dimension that is too small to bend

### Table 3. Working capacity of chair elements – 2 legs (kN)

Based on Shape Code 98, A, C, D = 500mm, B to suit cage. Capacity is 2 x Pult / 1.5.

<table>
<thead>
<tr>
<th>Depth between mats (mm)</th>
<th>250</th>
<th>500</th>
<th>750</th>
<th>1000</th>
<th>1250</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12 leg</td>
<td>16.9</td>
<td>4.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H16 leg</td>
<td>49.1</td>
<td>14.1</td>
<td>6.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H20 leg</td>
<td>105.8</td>
<td>33.6</td>
<td>15.6</td>
<td>8.9</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H25 leg</td>
<td>Y</td>
<td>78.8</td>
<td>37.3</td>
<td>21.5</td>
<td>14.0</td>
<td>X</td>
</tr>
<tr>
<td>H32 leg</td>
<td>Y</td>
<td>Y</td>
<td>101.9</td>
<td>58.7</td>
<td>38.0</td>
<td>26.5</td>
</tr>
</tbody>
</table>

**Notes:** X indicates an element that is too slender, Y indicates a dimension that is too small to bend
3.2.2 Maintaining shape
For columns and beams the main issue is in keeping the shape of the element. The stiffness of the element comes entirely from the connections between the bars and the links. As such the tying of the reinforcement becomes critical, particularly if the element is to be lifted.

Although outside the scope of this document, prefabricated pile and diaphragm wall cages often have shaped templates within the cage and bars are welded to these to provide some additional integrity to the cage.

3.2.3 Improved fixity of bars within cage
The requirements of BS 7973-2:2001 - Spacers and chairs for steel reinforcement and their specification, provides for stable cages in most circumstances. However the use of additional ties at starter bars, lifting points and any other highly stressed areas is recommended. The use of welding or of ‘bulldog’ type clamps should be considered when the connection is highly stressed. Where slabs are heavily reinforced, very deep or have to support heavy construction loads then the vertical load capacity of the chairs should be checked.

3.2.4 Improved spacing of mats within cage
If chairs are provided within the requirements of BS 7973-2 the mats will be adequately spaced. Where there are large eccentricities or potentially high lateral loads providing larger/stronger chairs will stiffen the element.

3.3 Measures that can increase stability
Supporting reinforcement often presents a number of practical problems such as finding suitable support points and the support obstructing the formwork. Various options are available which have advantages and disadvantages.

- Install one face of the shutter ahead of reinforcement fixing to act as a support
- Install independent props
- Install guy ropes
- Cast support posts within the wall projecting from the kicker.
- Adapt the access scaffolding used to erect it to have sufficient capacity to support the reinforcement.
- Install additional longitudinal bars to prevent racking, or additional spacer bars tied to the horizontal lacers to prevent flexure.

3.4 Method of assessing stability requirements
Prefabricated reinforcement cages require special consideration to ensure that the cage remains stable during fixing.

Single face reinforcement mats are particularly vulnerable to instability and temporary measures may be necessary to support the mat depending upon its height above kicker level and the spacing and diameter of the vertical bars.

Double faced cages may also require the addition of spacer bars to connect the individual faces of reinforcement together thereby improving the rigidity of the cage. Double face reinforcement above a certain height may also require additional external temporary measures to support the cage depending upon the spacing and diameter of the bars.

The construction sequence and method of working should ensure that the formwork closely follows the fixing of reinforcement. Specific measures should be undertaken, to ensure that stability of reinforcement is maintained, in the section beyond a previously concreted wall or pier.

Wherever possible the fixing of reinforcement should generally commence or terminate at corners or return walls which will normally provide additional rigidity to the cage. If external temporary measures are considered necessary their form should take into account the method of supporting the formwork fixed at a later stage.
3.5 Example of good practice

The following sequence of photographs shows details of support posts cast in to the base slab providing lateral stability to the reinforcement. This solution required permission from the permanent works designer.

Fig 16. Fabricated support posts fixed down to designed thickening in structural blinding
Fig 17. Wall starter bars installed and fixed to structural steel. Additional structural lacer bars fixed at top of wall to distribute loads back to the post.

Fig 18. Prefabricated wall starter bars lifted into position and held in position with crane whilst being fixed to structural steel.
4.0 Procedures and Responsibilities

4.1 Procedure

As noted in Section 1.4, BS5975:2008+ A1:2011 sets out the recommended procedure for temporary works.

The Construction (Design and Management) Regulations 2007 (CDM 2007) and associated Approved Code of Practice (ACoP) are directly applicable to the design and management of both permanent and temporary works. Lifting, and maintaining stability of cages, should follow the principles of prevention and protection as set out in the Management of Health and Safety at Work Regulations 1999, and emphasised in the CDM regulations.

4.2 Responsibilities: General

Responsibilities may arise in a number of ways, as shown in Tables 4 and 5.

The Permanent Works Designer (including as appropriate, the detailer) must give consideration to the buildability of the design at the permanent works design stage and this should have included consideration of the detailing of, for example, any identified splices and construction joints to ensure so far as is reasonably practicable that the specified reinforcement cages are not inherently unstable. Significant residual risks should be brought to the attention of the contractor. Although advice will not be expected on ‘normal cage situations’ e.g. wall or base reinforcement (the contractor may be assumed to be competent to deal with this), where the cage is significantly unusual in some way, the contractor should be alerted. For advice generally see ‘Guidance for Designers’ at:

http://www.cskills.org/supportbusiness/healthsafety/cdmsregs/guidance/Copy_5_of_index.aspx

Where contractual situations allow, it would normally be advantageous for the Permanent Works Designer to cooperate with the Contractor so that specific constructability is incorporated into the design. This will ensure that splices and construction joints are detailed to avoid unnecessary instability issues.

Industry standard contracts are for the most part silent on the subject of temporary works. The Employer or the Contractor may choose to stipulate specific obligations with respect to temporary works, for example reference to industry best practice. These must be incorporated expressly into the contract.

With regard to all responsibilities it is important that allocation of duties, and actions that flow from them, are recorded in writing and made known to the relevant parties. Checks are an important element of risk management and should be built-in to the design and construction processes.
4.3 Responsibilities: Construction Phase

The responsibility of ensuring that the temporary conditions are properly considered during the construction phase falls to the Temporary Works Coordinator (TWC) as set out in the British Standard. Whilst the majority of small items of reinforcement will present no significant risks the larger and more complex items will need to be considered more closely. Supervisors should be involved in developing the solutions and should be encouraged to raise any concerns about stability that they observe during routine inspections.

The responsibility for safe working will always involve the contractor undertaking the task; it will frequently involve other contractors and the Principal Contractor. The TWC will have a role as a co-ordinator.

<table>
<thead>
<tr>
<th>Table 4. Responsibilities under Contract and Statute</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Contract</strong></td>
</tr>
<tr>
<td>Responsibilities will vary depending upon the exact contract text but normally all site operations will be the responsibility of the contractor and sub-contractors</td>
</tr>
<tr>
<td>It is important that the division of responsibility between contractors is clear in respect of the lifting and stability of reinforcement cages</td>
</tr>
<tr>
<td><strong>Temporary Works Co-ordinator (TWC)</strong></td>
</tr>
<tr>
<td>A TWC should always be appointed. The TWC should co-ordinate the necessary actions in accordance with BS5975:2008+A1:2011</td>
</tr>
<tr>
<td><strong>Statute</strong></td>
</tr>
<tr>
<td>All parties have some responsibility. The Construction (Design and Management) Regulations 2007 (CDM 2007) and associated Approved Code of Practice (ACOP) are directly applicable to the design and management of both permanent and temporary works.</td>
</tr>
<tr>
<td><strong>Permanent Works Designers (PWD)</strong></td>
</tr>
<tr>
<td>PWD (employed by clients or contractors) must give consideration to situations where significant risks might arise from their design e.g. the configuration, weight, stability, size etc. of reinforcement cages, and where the significant risk could be reduced by reasonable actions by the PWD. Where significant risk remains, this must be brought to the attention of the contractor in accordance with the CDM Regulation 11. ‘Significant risk’ is where it is not likely to be obvious to a competent contractor; unusual; or likely to be difficult to manage effectively (CDM ACoP para.133).</td>
</tr>
<tr>
<td><strong>Temporary Works Designers (TWD)</strong></td>
</tr>
<tr>
<td>TWD must give specific consideration to reinforcement cages and ensure the design is such that lifting and stability in place is achieved safely. Information on significant residual risks should be passed onto the contractor.</td>
</tr>
<tr>
<td><strong>CDM Co-ordinator (CDM-C) (for notifiable projects)</strong></td>
</tr>
<tr>
<td>The CDM-C has the responsibility of ensuring that all designers are co-operating and co-ordinating their work, and working to eliminate hazards and reduce risk.</td>
</tr>
</tbody>
</table>
### Table 5. Construction Activities

<table>
<thead>
<tr>
<th>(I) Identify significant items of risk</th>
<th>Large and potentially unstable cages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Items to lifted</td>
</tr>
<tr>
<td>(II) Identify potential solutions</td>
<td>Review the proposed construction method</td>
</tr>
<tr>
<td></td>
<td>Introduce stability elements (additional reinforcement or bracing)</td>
</tr>
<tr>
<td>(III) Communicate</td>
<td>Co-ordination and consultation meetings/Tool box talks</td>
</tr>
<tr>
<td></td>
<td>Temporary works design drawings</td>
</tr>
<tr>
<td></td>
<td>Method statement (safe system of work)</td>
</tr>
<tr>
<td>(IV) Control Procedures</td>
<td>Supervision</td>
</tr>
<tr>
<td></td>
<td>Formal inspection/permission procedure (Permit to load / lift)</td>
</tr>
<tr>
<td></td>
<td>Monitoring and feedback</td>
</tr>
</tbody>
</table>

#### 4.4 Physical checks

All stages of the process are equally important however there is a greater potential for problems to occur on site. It is therefore important that there is adequate and experienced supervision in place that is fully aware of the risks and has been briefed on the control measures that need to be put in place. The check list below illustrates some of the key points to be considered.

- Checked and signed off temporary works design is in place.
- Latest revision of the design being used.
- Correct materials employed.
- Any fixing sequence is correctly observed
- Workmanship complies with the design (particularly important when relying on tying wire ties for part or all the strength of a cage).
  - Ties
    - Correct types of ties used
    - Tie frequency and spacing complies with the design
    - Ties are correctly tensioned
    - Sufficient twist projects from the tie
  - Bars
    - Temporary bars are correctly fixed
    - Correct shape codes have been used
    - Orientation of bars, position, spacing and layering are correct
  - No unauthorised cutting of bars has taken place
  - No unauthorised heat has been applied to the reinforcement
  - Bars are bent using correct formers in accordance with BS8666
  - Splices
    - Splices have lap length and appropriate ties
    - Appropriate lap stagger has been employed
  - Cages
    - Cage has retained the design shape
    - Reinforcement has not been kinked or bent out of shape
    - Physical dimensions of the cage comply with the design
  - Mechanical fixings/Welding
    - Mechanical couplers are fully engaged and tightened
    - Welding is carried out by an appropriately skilled welder to an approved procedure
    - Welds comply with the design and are of appropriate length and size
    - Any mechanical grips or connectors are installed in accordance with manufactures guidelines and are tightened to the correct torque
  - Any temporary works are installed in accordance with the temporary works design and a permit to load (put to use) is completed.
• Any modifications that are necessary to enable bars to be fixed have been approved by the Permanent Works Designer and Temporary Works Designer.

• Any distress to the cages or failures of ties should be reported to the TWC.

• When lifting, a lift plan is in place and complied with.

• Appropriate lifting beams, shackles and slings are used in accordance with the lift plan and temporary works design. They should also have current certification.

• A post lift inspection should be carried out, with any loose or failed tie wires replaced.

It is particularly important that works supervisors are vigilant in checking that the method statement (and other relevant documentation) is, and remains, relevant to the actual work in hand. Any concerns raised must be actioned prior to works continuing.

5.0 References

BS 4449:2005 - Steel for the reinforcement of concrete - Weldable reinforcing steel - Bar, coil and decoiled product – Specification

BS5975:2008 - Code of practice for temporary works procedures and the permissible stress design of falsework

BS 7973–1:2001 - Spacers and chairs for steel reinforcement and their specification. Product performance requirements

BS 7973–2:2001 - Spacers and chairs for steel reinforcement and their specification. Fixing and application of spacers and chairs and tying of reinforcement

BS8000-2.2 - workmanship on building sites - in-situ and pre-cast concrete

BS8666:2005 - Scheduling, dimensioning, bending and cutting of steel reinforcement for concrete – Specification

CIRIA SP118 (1995) - Steel Reinforcement - a handbook for young construction professionals

Concrete Society - Concrete on site 2 - Reinforcement

Concrete Society – Technical Report 53 - Towards rationalisation of reinforcement

Concrete Society - Concrete Advice 43 - Spacers & visual concrete

HSE – Sector Information Minute (SIM) 02/2010/04 - The management of temporary works in the construction industry

IStructE - Standard method of detailing structural concrete
Appendix A

(I) Guidance on design for lifting and fixing
The design of reinforcement cages should only be carried out by a designer who is competent to do so.

When carrying out a design, the performance of reinforcement cages under load can be difficult to predict using a straightforward structural analysis approach. There will inevitably be large variability in the construction due to differences between steel fixing techniques which need to be considered. The secondary effects caused by large deflection can also redistribute forces making it difficult to accurately predict realistic stresses in joints and members. The resultant of pulling components and shearing components needs to be considered when assessing the overall load on the ties at the bar to bar connections. Anyone designing cages should therefore adopt a conservative approach with a high degree of redundancy. Robustness is the key.

(II) Planning
Before carrying out a design, it is important to get a clear brief so that all parties fully understand the responsibilities, requirements and the forces that are to be considered. Good planning is a key factor in this. As noted in Section 4, responsibility for design in the temporary condition must be assigned. A plan should identify the following:

- Proposed layout
  - Position of joints both length and height
  - Permanent works reinforcement drawing and schedule
- Construction method
  - Prefabricated or fixed in situ
  - Limitations on lifting
  - Preferred method of providing stability
- Site constraints
  - Environmental considerations including exposure to wind
  - Physical restrictions due to site layout or working space
  - Time of year the work is to take place

(III) Loading
The loads on a reinforcement cage are derived from a number of different sources as listed below.

- Self-weight of reinforcement (including laps, additional bracing reinforcement, en-cast items and couplers)
- Wind loading. Typically based on the site wind pressure and the area of bar in each face multiplied by a force coefficient appropriate to a circular member $C_f = 1.2$. Consideration should be given on when the density of the cage becomes more critical than the individual bars.
- Ice loading (not common)
- Impact loading (value to be determined by the designer depending on the level of risk and the consequences of failure typically varies from 0 – 10 kN)
- Dynamic loading when being lifted (Typically 10% to 25% of dead load depending on the type of crane being used.)
- Nominal loading to take account of distortions (Typically 2.5% of dead load but should be determined by the designer)

It should be noted that not all these loads occur at the same time so the designer should make appropriate judgements to determine the most onerous combination that is likely to exist.

(IV) Different types of tie
The strength of ties can vary depending on the configuration of the wire and the tension in the wire when the tie is made. The length and number of twists will also affect the capacity of the tie. Most ties are still made by hand however there are machines available which are constantly being improved.

It is good practice to assume that half the ties are loose or broken in the design and ensure that there is sufficient redundancy to make sure that every bar is still secure. It is important to specify tie patterns, minimum numbers of ties and maximum tie centres.
The following photographs show some typical ties:

Bars may be clamped together at laps to achieve a higher strength joint, however this is very expensive and time consuming,

Bars may also be welded. Welding should comply with the British Standard for the welding of reinforcing BS EN ISO 17660-2 2006
Appendix B

(i) Reinforcing bar weight

Table 6. Reinforcing bar weights per metre (BS4449:2005 Table 7)

<table>
<thead>
<tr>
<th>Size</th>
<th>Kg/m</th>
<th>Size</th>
<th>Kg/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.222</td>
<td>20</td>
<td>2.466</td>
</tr>
<tr>
<td>8</td>
<td>0.395</td>
<td>25</td>
<td>3.854</td>
</tr>
<tr>
<td>10</td>
<td>0.616</td>
<td>32</td>
<td>6.313</td>
</tr>
<tr>
<td>12</td>
<td>0.888</td>
<td>40</td>
<td>9.864</td>
</tr>
<tr>
<td>16</td>
<td>1.579</td>
<td>50</td>
<td>15.413</td>
</tr>
</tbody>
</table>
Chairman: Bill Hewlett MA CEng FICE.
Secretary: John Carpenter CEng FICE CFIOSH

The Temporary Works Forum is a not for profit company (7525376) registered address (c/o Institution of Civil Engineers)
1 Great George St, London SW1P 3AA, Correspondence address: 1 Sherbrooke Close, Sale, Cheshire M33 5SZ

www.twforum.org.uk  Secretary: 07813 853 405